3.1.75 \(\int \frac {1-x^2}{1-x^2+x^4} \, dx\)

Optimal. Leaf size=46 \[ \frac {\log \left (x^2+\sqrt {3} x+1\right )}{2 \sqrt {3}}-\frac {\log \left (x^2-\sqrt {3} x+1\right )}{2 \sqrt {3}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 46, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {1164, 628} \begin {gather*} \frac {\log \left (x^2+\sqrt {3} x+1\right )}{2 \sqrt {3}}-\frac {\log \left (x^2-\sqrt {3} x+1\right )}{2 \sqrt {3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 - x^2)/(1 - x^2 + x^4),x]

[Out]

-Log[1 - Sqrt[3]*x + x^2]/(2*Sqrt[3]) + Log[1 + Sqrt[3]*x + x^2]/(2*Sqrt[3])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1164

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e - b/c, 2]},
 Dist[e/(2*c*q), Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x
 - x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] &&  !GtQ[b^2
- 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {1-x^2}{1-x^2+x^4} \, dx &=-\frac {\int \frac {\sqrt {3}+2 x}{-1-\sqrt {3} x-x^2} \, dx}{2 \sqrt {3}}-\frac {\int \frac {\sqrt {3}-2 x}{-1+\sqrt {3} x-x^2} \, dx}{2 \sqrt {3}}\\ &=-\frac {\log \left (1-\sqrt {3} x+x^2\right )}{2 \sqrt {3}}+\frac {\log \left (1+\sqrt {3} x+x^2\right )}{2 \sqrt {3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 40, normalized size = 0.87 \begin {gather*} \frac {\log \left (x^2+\sqrt {3} x+1\right )-\log \left (-x^2+\sqrt {3} x-1\right )}{2 \sqrt {3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 - x^2)/(1 - x^2 + x^4),x]

[Out]

(-Log[-1 + Sqrt[3]*x - x^2] + Log[1 + Sqrt[3]*x + x^2])/(2*Sqrt[3])

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1-x^2}{1-x^2+x^4} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(1 - x^2)/(1 - x^2 + x^4),x]

[Out]

IntegrateAlgebraic[(1 - x^2)/(1 - x^2 + x^4), x]

________________________________________________________________________________________

fricas [A]  time = 0.78, size = 39, normalized size = 0.85 \begin {gather*} \frac {1}{6} \, \sqrt {3} \log \left (\frac {x^{4} + 5 \, x^{2} + 2 \, \sqrt {3} {\left (x^{3} + x\right )} + 1}{x^{4} - x^{2} + 1}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)/(x^4-x^2+1),x, algorithm="fricas")

[Out]

1/6*sqrt(3)*log((x^4 + 5*x^2 + 2*sqrt(3)*(x^3 + x) + 1)/(x^4 - x^2 + 1))

________________________________________________________________________________________

giac [A]  time = 0.18, size = 39, normalized size = 0.85 \begin {gather*} -\frac {1}{6} \, \sqrt {3} \log \left (\frac {{\left | 2 \, x - 2 \, \sqrt {3} + \frac {2}{x} \right |}}{{\left | 2 \, x + 2 \, \sqrt {3} + \frac {2}{x} \right |}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)/(x^4-x^2+1),x, algorithm="giac")

[Out]

-1/6*sqrt(3)*log(abs(2*x - 2*sqrt(3) + 2/x)/abs(2*x + 2*sqrt(3) + 2/x))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 35, normalized size = 0.76 \begin {gather*} -\frac {\sqrt {3}\, \ln \left (x^{2}-\sqrt {3}\, x +1\right )}{6}+\frac {\sqrt {3}\, \ln \left (x^{2}+\sqrt {3}\, x +1\right )}{6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^2+1)/(x^4-x^2+1),x)

[Out]

-1/6*3^(1/2)*ln(x^2-3^(1/2)*x+1)+1/6*3^(1/2)*ln(x^2+3^(1/2)*x+1)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int \frac {x^{2} - 1}{x^{4} - x^{2} + 1}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)/(x^4-x^2+1),x, algorithm="maxima")

[Out]

-integrate((x^2 - 1)/(x^4 - x^2 + 1), x)

________________________________________________________________________________________

mupad [B]  time = 4.31, size = 18, normalized size = 0.39 \begin {gather*} \frac {\sqrt {3}\,\mathrm {atanh}\left (\frac {\sqrt {3}\,x}{x^2+1}\right )}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^2 - 1)/(x^4 - x^2 + 1),x)

[Out]

(3^(1/2)*atanh((3^(1/2)*x)/(x^2 + 1)))/3

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 39, normalized size = 0.85 \begin {gather*} - \frac {\sqrt {3} \log {\left (x^{2} - \sqrt {3} x + 1 \right )}}{6} + \frac {\sqrt {3} \log {\left (x^{2} + \sqrt {3} x + 1 \right )}}{6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**2+1)/(x**4-x**2+1),x)

[Out]

-sqrt(3)*log(x**2 - sqrt(3)*x + 1)/6 + sqrt(3)*log(x**2 + sqrt(3)*x + 1)/6

________________________________________________________________________________________